Data for Radium Mobility and the Age of Groundwater in Public-drinking-water Supplies from the Cambrian-Ordovician Aquifer System, North-Central USA: Table 1. Dissolved gas modeling results, environmental tracer concentrations (tritium, tritiogenic helium-3, sulfur hexafluoride, carbon-14, and radiogenic helium-4), and results for the mean age of groundwater by calibration of lumped parameter models to tracer concentrations.

High radium (Ra) concentrations in potable portions of the Cambrian-Ordovician (C-O) aquifer system were investigated using water-quality data and environmental tracers ( 3H, 3Hetrit, SF6 , 14C and 4Herad) of groundwater age from 80 public-supply wells (PSWs). Groundwater ages were estimated by calibration of tracers to lumped parameter models and ranged from modern (1 Myr) in the most downgradient, confined portions of the potable system. More than 80 and 40 percent of mean groundwater ages were older than 1000 and 50,000 yr, respectively. Anoxic, Fe-reducing conditions and increased mineralization develop with time in the aquifer system and mobilize Ra into solution resulting in the frequent occurrence of combined Ra (Rac = 226Ra + 228Ra) at concentrations exceeding the USEPA MCL of 185 mBq/L (5 pCi/L). The distribution of the three Ra isotopes comprising total Ra (Rat = 224Ra + 226Ra + 228Ra) differed across the aquifer system. The concentrations of 224Ra and 228Ra were strongly correlated and comprised a larger proportion of the Rat concentration in samples from the regionally unconfined area, where arkosic sandstones provide an enhanced source for progeny from the 232Th decay series. 226Ra comprised a larger proportion of the Rat concentration in samples from downgradient confined regions. Concentrations of Rat were significantly greater in samples from the regionally confined area of the aquifer system because of the increase in 226Ra concentrations there as compared to the regionally unconfined area. 226Ra distribution coefficients decreased substantially with anoxic conditions and increasing ionic strength of groundwater (mineralization), indicating that Ra is mobilized to solution from solid phases of the aquifer as sorption capacity is diminished. The amount of 226Ra released from solid phases by alpha-recoil mechanisms and retained in solution increases relative to the amount of Ra sequestered by adsorption processes or co-precipitation with barite as sorption capacity and the concentration of Ba decreases. Although 226Ra occurred at concentrations greater than 224Ra or 228Ra, the ingestion exposure risk was greater for 228Ra owing to its greater toxicity. In addition, 224Ra added substantial alpha-particle radioactivity to potable samples from the C-O aquifer system. Thus, monitoring for Ra isotopes and gross-alpha-activity (GAA) is important in upgradient, regionally unconfined areas as downgradient, and GAA measurements made within 72 h of sample collection would best capture alpha-particle radiation from the short-lived 224Ra.

Data and Resources

Additional Info

Field Value
Maintainer Paul E Stackelberg
Last Updated August 14, 2022, 02:35 (CDT)
Created August 14, 2022, 02:35 (CDT)
Identifier USGS:59ea88bee4b0026a55fd0137
Modified 20200826
Theme {geospatial}
accessLevel public
bureauCode {010:12}
catalog_@context https://project-open-data.cio.gov/v1.1/schema/catalog.jsonld
catalog_conformsTo https://project-open-data.cio.gov/v1.1/schema
catalog_describedBy https://project-open-data.cio.gov/v1.1/schema/catalog.json
metadata_type geospatial
old-spatial -97.514648437199, 35.924290222685, -82.22167968781, 49.410688528111
publisher U.S. Geological Survey
publisher_hierarchy Department of the Interior > U.S. Geological Survey
resource-type Dataset
source_datajson_identifier true
source_hash 7c6f56ff7f4d90aa8f4557cc89823f76f77533ce
source_schema_version 1.1
spatial {"type": "Polygon", "coordinates": [[[-97.514648437199, 35.924290222685], [-97.514648437199, 49.410688528111], [ -82.22167968781, 49.410688528111], [ -82.22167968781, 35.924290222685], [-97.514648437199, 35.924290222685]]]}